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In recent years several multivariate interpolation methods have been
investigated. The main interest has been concentrated on existence and
uniqueness theorems (see, e.g., Milne er al. [13], Thacher [20], and Thacher
and Milne [21]) as well as on convergence properties (cf. Amelkovic [1],
Moldovan [14], Shisha and Mond [17], Sloss [18], Haussmann and Knoop
[11] and [9]) of certain interpolation processes. The authors mentioned
above used specific methods to get results in particular cases.

it is the purpose of the present paper to provide a unified theory to deal
with multivariate interpolation processes. This theory is based on the use of
tensor products. In the first section we briefly consider existence, uniqueness,
and representation properties of multivariate interpolation. For convergence
statements we need some investigations on d-fold cross norms established
in Section 2. Then we give convergence theorems (including quantitative
assertions) for interpolation operators in Section 3. These results are based
on the knowledge of certain one-dimensional theorems and on the structure
of the multivariate interpolation process only. In Section 4 we illustrate
our results by several examples, including cases of equicontinuous and non-
equicontinuous sequences of interpolation operators.

1. CONSTRUCTION OF MULTIVARIATE INTERPGLATION OPERATORS

Let ne Ny := N U {0}, X a (real or compiex) vector space, L' an (n + I)-
dimensional subspace of X, and ¢,, ¢ ,..., ¢, linear functionals, i.e.,
¢, € X*, the algebraic dual of X (0 < v << »). Then we have the following
interpolation problem P := (X, U; ¢y ,..., $,): Given an arbitrary xe X,
does there exist a u € U, such that the interpolation conditions

u) = $.(x) O<v<n ()
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are satisfied ? If for any x € X the interpolating element u € U is determined
uniquely, we shall call Z an interpolation system. This is the case if and ouly
if the restrictions ¢, | U (0 < v <{n) form an (algebraic) basis of U* (see
Davis [5]).

Given any interpolation system & = (X, U; ¢y ,..., ¢,) there exists a
uniquely determined interpolation operator P:X — U which maps an
x € X onto its interpolating element . P can be constructed as follows:
There is a unique dual basis {uy ,..., i} of U with respect to{¢y| U.,..., ¢, | U}
such that

o) =9, O0<pv<n

With the aid of these elements we define the interpolation operator P by

P(X) = z,_L: ¢V(x) tU, .

Obviously, (1) is satisfied for ¥ = Px, and P is a linear and idempotent
operator.

Now let de N, d == 2. We are going to define d-dimensional interpolation
problems out of one-dimensional ones by means of tensor products.

DrerintTiON 1. Let 15 € Ny and the interpolation problems

Psi= (X5, Us ; Psgrenes ‘}I’ana)

be given for 1 < 8 <{ d. Then

/7:: @ _/75
1<8<d
33(@’ Xa,® Ua;¢1v1®"‘®§[’dud:0<Va<’75,1gagd)
1egd 1gogd

is called the tensor product of the given problems Z; (1 < 8 <{ d). In certain
situations it is convenient to replace ®;<s<a X5 by a larger vector space
ZD ®q<s<a X and the functionals ¢y, ® -+ @ ‘?ded by certain extensions
to Z.

The following theorem answers the question whether the tensor product
of interpolation systems is an interpolation system again.

TreEOREM 1. (cf., [8]). Let the interpolation problems 24 .= (X5, Us;
B0 5--0s Pony) be given. F 1= Qycs<a P (and any extension of P) is an
interpolation system if and only if P, ,..., P4 are interpolation systems.

Now we are going to construct the interpolation operator cor-
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responding to the tensor product & of the interpolation systems #; 1=
(X5, Us; ¢spsens <{>5,,6) (1 <6 <d). Let {us,..., u%} be the dual basis of
{sg | Us yeers Psn o1 Ush. It is easy to see that the interpolation operator
corresponding t0 2 1= (Ky<scqg s has the following form:

3

N
—~ . >~ i = ol
P= 0 Py= Z 2 (¢1V1 K ) (U & B thgy)
1<igd 0=0 =0

Examples of certain multivariate interpolation operators will be considered
in Section 4.

2. d-ForLp Cross NORMS

In order to get convergence statements on multivariate interpolation
operators we have to provide the tensor product spaces with appropriate
Cross norms.

DEeFmNITION 2. (cf., Schatten [16]). Let (X5,1* ) as well as (Y5, 1 - [;)
be (real or complex) normed vector spaces (1 << 3 < d).

() A norm n on the d-fold tensor product X),<s<q X; is called a
a-fold cross-norm if for any element of the form x; ® - & x; (€ X5,
1 < § < d) the following identity holds:

d
706, & & xg) = H 1 x5

=1

If n is a d-fold cross norm on &y¢s<y X5 then the normed vector spacs
(Rn<s<a X5, ) will be designated briefly by ®y 0 Xs. In addition, its
completion will be denoted by &1 50 X5 -

(i) Let » and w be d-fold cross norms on &y ¢scq X5 r85p., Kicoca ¥s -
{(n, wy will be called wuniform cross norms with respect 10 (Ri<oca X5 »
Rhcoca V5 if for any continuous linear operators Ss : X5 — Y5 (1 <8 < 4)
the tensor product operator

& Si @ X OF Y,

1Legd 1od igogd
is also continuous, and, if in addition, using the induced operator norms
| - and | [l , we have

I! Gl
H "~ Ss }‘ = I 0 Ss a1 -
" 1gegd é=1
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In the special case when we have X, = ¥, for 1 <8 < dand 4 = w then
7 is called a uniform cross norm on ®;cs<q X5 (cf., [16]).

Now we are going to consider special d-fold cross norms on the (algebraic)
tensor product &;<s<q X5 of the normed vector spaces (X5, || + ;). To this
end let B € ®)<scs X5 be an arbitrary element and

71 g
Z e z 5"1""’& C X, & - ®ded
¥ =0 vg=0

a representation of &. Then we define

(1) the d-fold e-norm (cf., [23]): Let (X5, || - |ls)) be the normed dual of
(X5, Il - lls) for 1 < & < d. Then we have

7y 74 d
«8) = sup - sup Yo Y byt T Palxsny) |-
dreXy deeXy ly=0 =0 5=1
Bl <t gl <l

It turns out that the value (&) does not depend on the particular representa-
tion of & € ®y<sca X5 3
(2) the d-foid mw-norm (cf., [23)):

. ny ng d
w(@) = inf ¥, 0 Y Ly | L] %ol
py=0 vg=0 8=1

where the infimum is to be taken over all equivalent representations of =.
Therefore, #(E) does not depend on the specific representation of 5;

(3) the d-fold pre-Hilbert space norm o (cf., [6]): Here we have to
suppose that the spaces (X3, || - |ls) are pre-Hilbert spaces with the inner
products (: | )5 (1 < & < d). Then the a-norm is defined by

ny W ng Ny 4 1/2
—
AZ) =Y Y XY s Eopoa [T Koug | Xoug)s
”1=0 vy =0 tg=0 v;=0 H=]1

In this case, too, (&) is independent of the representation of & € ®;«s<q X
(cf., [16]).

THEOREM 2. Let (X5, -lls) and (Y,, |- |s) be normed vector spaces
(resp., pre-Hilbert spaces) for 1 << 6 << d. Then (¢, €) and (7, w) (resp., (o, )
are uniform cross norms with respect to (Dycsca Xs > Oicocq Ys). Furthermore,
for T = €, (resp., o) the spaces

o . o~ AN
X1 ®1‘2 X2 ®7‘2 ®‘fz Xd and ®TdX6 (2)

1<8<d

are isometric isomorphic independent of any brackets used when taking tensor
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products and completions in the first space in (2). Here and in the following,
if necessary, © (resp., €, m, o) are provided with an index k (2 <k < d) to
note that the occuring cross norms are k-fold ones.

Preof. We are going to show that the spaces
XI @)72 (X.Z '8‘72 ( (Xd~1 @172 Xd) o })-
(- (Xy @7, Xs) ) Ky Xay) Biry X

and @71”@@ X, coincide for 7 = €, 7, and «. To do this we first prove that wa
have

X @ @ X) = 2, @
\2gogd £ogd
as well as
( & X B K= & K. (5
\igbgd—1 . igégd

For the special case d = 3, from (4) and (5) we deduce that forming normed
tensor products is an associative operation for = = ¢, =, x. By induction, we
get that the spaces in (3) coincide, and that X; &, X, ®, - &, X,isindepen-
dent of any bracketing. Since the completion of a normed vector space is
uniquely determined, the statement will be settled if {4) and (5) can be
verified. Because (5) can be proved in the same way as (4) it is sufficient to
prove (4). We restrict our proof to the case r = ¢, the proofs for = ==
and « run in a similar way.
Let

n
h = Z X1: & xpp & 9 Xy

%
=1

be an arbitrary element of Riycs<q X5. and (X5, || - lisy) the normed duals
of the X5 (1 <3 < d).

Then
n s
i e . A e i 4
1 e (25550 500 = sup sgup Z X () - Xy & 0 D xan) i
- ) zeXy os(@aCakaXs) ! it
12y 1y <t It

For any x;" € X;’ we have

n

By 1= Z Xy () (g @ 0
i=1

Xg) € (O X,

®

)
AN
(S
A
2

640/19,3-2
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The Hahn-Banach theorem implies the validity of the following equation
(cf., [19]):

sup ‘ Z X () - Pl @ 0 @ Xgy)
lbf5(01<t5<az’(o)
|I*bl|<1

= || By lleyy -

By the definition of the e;_;-norm we get

V]

I /7;::1' ||ed_1 = sup - Sup Z Xy (xq) * X0 () = o0 e xq (xas) l
%3 € Xy’ w'eXy 1
2/ gyt Tixg Mgyt

Hence, for any /# € ®;<;<q X5 We have

n

I A Hx1®€,,(®§d@1<dxé) Sup -+ Sup Z X1 () + et Xd (X i)
h #eXy zeX, Vi
1y Tyt g <t
= Ed(h)- I

For the applications in Section 4 we need some knowledge on the e-norm
on the tensor product of certain normed vector spaces. To this end let
I; = las , bs] C R be nontrivial compact intervals, and C(;) the vector space
of all continuous real functions on I; provided with the Chebyshev (or
sup- ) norm

Il x lls :== sup | x(1)| (xeCl),1 <& < d).
tels

Then we have the isometry (cf., [23]):

a AN
c(X n)= & can.
s=1 18<d
ProroSITION 1. Let the normed vector spaces C(Is)be given for 1 << 6 < d

as well as 3,41, 2,...,d}, and let L: C(Ls) —~ C(Ls) be a continuous linear
mapping. Then for any h C(X sy Is) the followmg equallty holds:

sup | L(ka)lls, = l(id* & ++ ® id™ ™ @ L @ id™"* @ - & id )l .

xeely

1ogd
58,

Here h,, designates the dyth partial mapping
syt 5y 2 X 0 H(X1 4eey X515 Xy Xogi1 50005 Xg) € R

with fixed points xs< Iy (8 5= 8,), and id® is the Sth identity mapping id®:
C(I;) — C(I5). By ™~ we denote the uniquely determined continuous extensions
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of tensor product operators to the completion of the corresponding tensor
product space.

Proof. Givenan he C(Xf:;1 [;), the mapping
hpi (g, Xy e Xy > [L(R; M,

is an element of C()(Z:1 I,). The mapping
d \ cod
H: c(x Iﬁ)shﬁhéeC‘X 1,5)
=1 Vgl
is linear and continuous. On @i@g C(I;) H, coincides with
H, = id R Qid* QL Rid™ @ id

Therefore, A, is the uniquely determined continuous extension of H, tc
the completion &); ., C(;). With the aid of this we ge

Gd" @ - R id N D L& id™ 5 - R id Yyl
= | H M. = sup '"[Ls ) ) = sup [ LAy,
wg€ls rTgsis
1gogd 1Logd

hence, the proposition holds true. J

3. CONVERGENCE OF LINEAR INTERPOLATION OPERATORS

Given a sequence 2, 1= {X, U, ; $§"'...., $'*'} of interpolation systems,
then corresponding to Section 1, there is defined a segquence {L,},.. of
linear interpolation operators:

L,:X—U,CX.

The theorems and definitions in this section will be given for sequences of
general linear operators. As special cases we can get statements for sequences
of interpolation operators. In addition, one can get corollaries for operators
which do not arise from interpolation systems. As an exampie we mention
multivariate Bernstein operators (see, e.g., [2]).

DerINITION 3. Let (X, || 1) be a normed vector space and {F,}., 2
sequence of linear operators:

P, X—>X (n=N),



212 HAUSSMANN AND POTTINGER

Further, let B(n) be an arbitrary positive real sequence converging to zero.
{P,}len s called convergent of order B(n) at the point x € X if we have

| x — Px|l = OBm)  (n— o).

For the pointwise convergence of sequences of tensor products of linear
{not necessarily continuous) operators on the algebraic tensor product of
normed vector spaces one gets the following generalization of a result in
[7, 10]:

THEOREM 3. Let (X5, -ls) for 1 <8 < d be normed vector spaces,
{ P }rens Sequences of endomorphisms of X5 , m a d-fold cross norm on Qycocy Xs »
and

m

h = leu®.”®xdue @ Xﬁ'

u=l 1gogd

Suppose the sequences {P,%},.n converge for the elements xg, (1 <8 < d,
1 < p << m) of the orders os,(n). Then

X Pl XX X" X,
1<8<d 1gégd 1g6<d
converges of order a(n) 1= MaX,<s<q1<u<m %su(M) at the given element h.
We are going to consider continuous tensor product interpolation operators
on the completion ®2<Kd X, of Banach spaces X; (1 << 8 < d). First we
get as a consequence of the Banach-Steinhaus theorem the following:

THEOREM 4. Given the Banach spaces (X5, || |ls) for 1 < 6 < d, and let
{P %} nery be d sequences of continuous linear operators

Pnﬁ:X5—>X5 (1<8<d)

such that P,°x converges to x for all xe X; (1 <38 < d, n— ). Suppose,
&i<oca X IS provided with a uniform cross norm 7. Then

N AN AN
@ Pn6: 6()”)(5‘—> ®TIX3

1<egd 180 igégd

. s XN . . .
converges pointwise on Xy gs.q X5 to the identity mapping.

Theorem 4 describes the qualitative behavior of the convergence of
continuous linear interpolation operators. In order to get assertions on the
quantitative behavior for not necessarily equicontinuous linear operators we
prove
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THEOREM 5. Let (Xs, ||+ |ls) be normed vector spaces (1 <8 <d), n a
uniform cross norm on ®1<5<d X5, and {P,*,.n sequences of continuous
linear operators on X5 (1 < 8 < d). Then for an arbitrary k € Ql@\,, X; the
Jollowing estimation holds true:

|

where & designates the symmetric group of all pernutations of the elements
{1, 2,...,d}, and

., ,
n ' [} U 5'. i
i *( (><\ ) (k) ” min | Z [k — 0Pk, - H Pk o6, -

a=1 '

\O\d =341

= jdt ®\ @ idvt @ P, @ idri @\ @, idd.
Proof. Let o € & be given. By means of well-known density arguments
we get
idl C;g,,;dz 3 @ idé — P,} @ P2 @ @P d
= idl ‘?‘\) ‘@ ida(d)~1® (idu(d) Pa(d)) Q ide (@)+1 /\ O id?

. = = — (@) = el
. idli‘f/ z<)(lda(d 1) Pa(d 1)) mldo(d 1)+1/\ .. 'D Pad C‘ \?’9!({“

X

4o P P O D(ldo(l) PZ(U) ?) P;(})HL :’><f\: .

O

&)
T

Since 7 is a uniform cross norm this latter relation yields

’!k & P’

1<a<d

™~

k= (d'® @ PP @ id" " - @ iYWk,

—
RS
=

>
i
-

d

olv) .
T 1P e - ‘

r=0-1

(=)
e

This relation holds true for any permutation o €., ; hence, the assertion
is proved. §

In the special case d = 2 this theorem can be found in [12].

Remark. The occurrence of the norms || P2 |l.¢) in (6) causes a dete-
rioration of convergence in the multivariate case in comparison with the
convergence of the “components”

ik —(d" @ B PORid P & B id YK, .

Since we can choose an advantageous permutation ¢ £.%,; we can get an
optimal estimation of the form (6).
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If we restrict the continuous linear operators to appropriate subspaces,
we get the same order of convergence in the multivariate case as in the one-
dimensional components, which can be stated as follows:

THEOREM 6. Lei(Y;, | - |5) be normed vector spaces (1 << 6 < d),{P,%},en
sequences of continuous endomorphisms on Y5 (1 << 8 <C d). Further let X be
subspaces of Y, , and let there exist a finer norm || - || on X, than the induced
norm (i.e., suppose there exist real numbers cs such that | x |, < ¢5 || x |5 for
all x e X5 (1 < & < d)), which makes the sequence {P %} ., defined by

pnd:(Xas H 'Hﬁ)BXF—)Pné(X)G(Ya, ‘ ) 16)
uniformly convergent of order as(n) to the (continuous linear) injection
LX) (Y |- o)

If (n, w) are uniform d-fold cross norms with respect to (Qy<s<q X5 » Kr<oca Ys)
then for any k € ®;scq X5 we can state

[e— (& P @] = omax wio)

1gogd
for n— co.

The importance of this theorem is given by the fact that for elements &
belonging to the subspace @1'@ <o X5 one can get multivariate convergence
statements of the same guality as in the one-dimensional case without
restrictions concerning equicontinuity of the operator families {P %}, -

4. APPLICATIONS
Now we are going to consider several applications of Theorems 3,4, 5, and 6.

(A) Muliivariate Cubic Spline Interpolation

First we investigate the multivariate cubic periodic spline interpolation
operators S, ...,, . To this end we need corresponding results in the one-
dimensional case which was treated by Cheney and Schurer [3, 4].

Let C.J0, 1] be the space of all continuous functions fon [0, 1] satisfying
f(©) = f(1), and provide C,[0, 1] with the supremum norm. Then (see
Cheney and Schurer [3]) the periodic cubic spline operator with respect
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to the equidistant nodes 7! :=vjn (0 < v <n) has the following form:
n
S, CLl0, 15 /> S,(f) = Y. flvjm) - " € C.J0, 1
v=0

where the 5! are periodic cubic spline functions associated with the nodes

(™o 7Y} satisfying s™(n%™) = §,,. Cheney and Schurer [3] proved
that for the Chebyshev norm we have

1= S <USall - (/. 1i2n),

and, in addition, the estimation

IS0 < %(1 + 33/2),

where « is the modulus of continuity.
These results apply for multicubic periodic spline interpolation. In order
to do this provide the nodes and the operators occurring above with indices

o (I < 8 << d). Then the d-dimensional periodic cubic spline operator has
the form

Spn, 1= D S5 C, ()& [0,1])~>c*()2 [0, 1}‘}.

1<o<d 5=1 s=1

Here C*(Xg;l [0, 1]) denotes the space of ali functions % ¢c C(X;Ll 10, 1%
that satisfy 2,(0) = A4(1) for 1 < & <C d (in the notation as in Proposition 1).
With the aid of Cheney and Schurer’s result [3] and Theorem 4, we get for
eachhe C.( )(6_1 [0, 1]) for not necessarily coinciding #;,..., #; the convergence

lim I — 8yl = 0.
In addition, we can get the quantitative estimation:

THEOREM 7. For any function h C*(Xg=1 [0, 1) the following estimation
holds true:

d d
i \
=8, ol < min Y H ng(),,; [ ol)] * Wale) (/’ P

L S=1 v 2;70(5) !
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Here the kth partial modulus of continuity w;, of a function fe C(Xg=1 Iy) is
defined by

wk(f; t) = Ssup Sup [f(xl seves Xfg poens xd) _"'f(xl LR ] J?k 9--'axd)’:
wsels |ap—7 <t
18 @, Kpely,
Sk

where 1 <k <d, teR, t >0, and I; are compact intervals (see [22]).

Proof. Taking the notation of Proposition 1, we obtain with the aid of
Theorem 5 and Proposition 1 the estimation

= Syl

< min }: n I S;:f,&, I« sup [1Gd”® — S22 3o )lote

9€Fa 521 visi1 z,€10,1)
i<icd
Js/-c(a)

o\, 1
< min Z n | S50 o1 * SUP @ (hq(a) m)

Fe 571 vs41 x;el0,1]
1<3<d
i#a(8)
® 1
—min 1T 152 oo - e () 1
L4 571 vosi1 Mo (s)

In this case of periodic cubic spline interpolation the corresponding
interpolation operators are equicontinuous. Because of this fact our estimations
in several variables are of the same quantitative behavior as corresponding
one-dimensional assertions (up to some more complicated constants). If
the sequence of interpolation operators is not equicontinuous then Theorem 5
yields worse estimations in the several variables’ case than in one dimension
because of the norms || P;’,f;‘(’v) lltsy1 Occurring in Theorem 5. We are going to
point out this in the case of multivariate Lagrange interpolation. In addition,
Theorem 6 enables us to get better results for certain functions lying in

some subspaces.

(B) Lagrange Interpolation in Several Variables

Let the compact intervals J; = [—1, 1] (1 << 8 < d) be given as well as
the d infinite triangular matrices M5 which we shall call nodal matrices

(cf., [15]):

= x Xy (1 <8 <),

where we have

B —I1<x®<lfor1 <8<Kd,0<v<nn=0,1,2,..,
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(i) Fixed any § and any n € Ny, then

X = x) (for po= v)

holds true.
For x; € J, we define

() oy (x5 ()
n . 7
oy (X5) 1= 1 — *—TT“(T“ (X5 — X5)
)
and
—( 7)
[f")(’,(a) = ")
FO = G G, = )

A nodal matrix M, is called ps-normal, if
(n)(rb) Pé ~ 0

forall x;eJ;, all ne N,, and all v €{0,..., n}.

If we take My = {£{2,..., &P nse » Where {E05,..., 2} is the set of zeros
of the (n + 1)th Chebyshev polynomial of the first kind, the latter
is given on [—1,1] by T,..(x) =cos((n + 1) - arccos x), then M; is
I.normal. In the latter case, the nodes will be called Chebyshev nodes.

With the aid of the fundamental functions of Lagrange interpolation,
179 we define the 3th Lagrange interpolation operator

Ly, ClJs) 3 f> Loy(f) € CWJy)
by

u>_zﬂ¥%rw
=0
for a given nodal matrix M, on J;. For p;-normal resp., Chebyshev nodes

the following one dimensional estimates in the Chebyshev norm hold (see
1sh:
L i)

T )
ngsﬂs /

1= LoDl = O

(}?5 —> OO)

resp.,

e L) = 0 (92 ")y 0)

. f1ts s
[}
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provided that f'e Crs(J;), the space of all r,times continuously differentiable
functions, and f78 € Lip a5 (0 << a5 << 1). In the multivariate case these
results yield

THEOREM 8. Denote by Ly ..on, (resp., En;"'"a) the d-dimensional Lagrange
interpolation operator

P
Loy 1= & L2, c(x )A» c(x JB)
1<O<(Z é=1 =1
with respect to psnormal nodes (1 < 8 < d) (resp., Chebyshev nodes) in each
component, and suppose he C(Xt,_1 Jﬁ) possesses the partial derivatives
o7ehjox5s, which latter lie in Lip o5 (0 < o << 1) for 1 < & <C d (independent
of the other variables), then the following estimations hold.

d (11/2)0(5)
” h— L”l"'”d(h)“E = (mll’l Z m)

§=1
resp.,

d
» - . (log ns)e®
[ h— Ln]_"'nd(h)ue =0 (ﬂg}i gl W

for (714 geeey Hg) — 00,

This estimation turns out to be worse than the corresponding one-
dimensional estimation above. For the subspace

PaN /d
®° CUIC B U = (X 1)
1Logd 1gogd =1/

a theorem holds true which makes assertions on multivariate interpolation
convergence of the same quality as the one-dimensional results. It is a

consequence of Theorem 3.

THEOREM 9. Let h = Yo, fue ® @ fuc € ®icsca CWUs) be given such
that the functions fs. are rs-times differentiable and fi5' € Lip o,
(0 < oy < 1). Then we have the following estimations for psnormal (resp.,
Chebyshev) nodes:

/ 1/2
1B = Lyonf)le = O ( max 1 )
1

<r<k I‘lro;('*"’&c
<dé<d

resp.,

- log ns
Hh— Ly, W= 0 (lrgké 1’175K+a5'<) for (ny,..., ng) — o0.
1<8<d
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In some special sitnations, one can achieve the same order of convergence
of interpolation in the multivariate case as in the one-dimensional case even
if one does not restrict to the noncompleted tensor product spaces as in
Theorem 9. In the following theorem we want to point out this fact for the
multivariate Lagrange interpolation.

To this end we introduce the space C##a{ Xf::l Js) which consists of zaii
functions whose derivatives D7"'7¢ exist and are continuous whenever
0 <7y < ps (1 <8 < d). Provide Cf’l"""d()(g:l Js) with the norm of uniform
convergence in these derivatives, i.e.,

:= max sup | D™ ™h(x, . x,).
[<6<d p ! (‘15 H d)

0<rs<pg

1l ng
EESED

Then Theorem 6 yields

THeorREM 10. Let Ly, ...n, (resp., E"r“"a) be the d-dimensional Lagrange
interpolation operator,

:d \ ;od \
Lo c(x Jg) —C(X 4},
5 .o=1 /

Y
||
-

with respect to psnormal (resp., the Chebyshev) nodes in Js = {—1. 1]
(1 <8 <d). Then for all heC”l“'”d(X;Ll J;3) the following estimations
hold trie:

9

1/
s

| h = Ly ()l = O (max, 2]

\1<s<d nls

resp.,

i — Ly (). = O ( max l_qg_n_é) Jor (s .., ng) — oo

1<e<d n;’a

Proof. By Treves [23], we have the isometry

fd N )
(X Jﬁ) = & CMJy).

1gogd
If for any 6 €{1, 2,..., d}, j; resp., EZS denote the mappings
ja: Cpé(Ja) afoE C(Jé},

L C™(J) s g L3 (g) € CUJ,),
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then the following estimation holds true:

1/2

9] ( nﬁp ), for p;-normal nodes,
H ia — H — 1166
me /o log 1,
0 (—,75—"—) for Chebyshev nodes,
16
(for ny; — o0), where || - || is the corresponding operator norm. Indeed, with

the aid of Jackson’s theorems we have

s — Loyl = sup |js(g) — L3 ()l

llall5<1

= sup [1ju(g) — Lol < sup (L5, 1+ 1)« Eny(2)

llgll, <1 llgll 5 <1

5 1
. 0 —— — .

gK (”erau—i_ 1) 11;)5 - %
(i = 1 for p;-normal nodes, i = 2 for Chebyshev nodes). Here E,(g) denotes
the approximation constant of g with respect to the Chebyshev-norm, and
| {5, is the norm of uniform convergence of the derivatives of order =;
0 <75 < po)-

In the case of p;-normal nodes we have

ni?
A, <K -2
I = 1 "ga »
and in the second case
log n
A, < K, - —235
TR nms

holds true. Hence with the aid of Theorem 6 the proof is established. §
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