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In recent years several multivariate interpolation methods have been
investigated. The main interest has been concentrated on existence and
uniqueness theorems (see, e.g., Milne et al. [13], Thacher [20], and Thacher
and Milne [21]) as well as on convergence properties (cf. Amelkovic [1].
Moldovan [14], Shisha and Mond [17], Sloss [18], Haussmann and Knoop
[11] and [9]) of certain interpolation processes. The authors mentioned
above used specific methods to get results in particular cases.

It is the purpose of the present paper to provide a unified theory to deal
with multivariate interpolation processes. This theory is based on the use of
tensor products. In the first section we briefly consider existence, uniqueness,
and representation properties of multivariate interpolation. For convergence
statements we need some investigations on d-fold cross norms established
in Section 2. Then we give convergence theorems (including quantitative
assertions) for interpolation operators in Section 3. These results are based
on the knowledge of certain one-dimensional theorems and on the structure
of the multivariate interpolation process only. In Section 4 we illustrate
our results by several examples, including cases of equicontinuous and non­
equicontinuous sequences of interpolation operators.

1. CONSTRUCTION OF MULTIVARIATE INTERPOLATION OPERATORS

Let n e No := N u {O}, X a (real or complex) vector space, U an (11 + 1)­
dimensional subspace of X, and epo, epl ,... , cjJn linear functionals, i.e.,
1>" e X*, the algebraic dual of X (0 :'( v :S;; n). Then we have the following
intel1Joiatiol1 problem f!J := (X, U; epo ,... , epn): Given an arbitrary x EX,
does there exist a U E U, such that the interpolation conditions

1>v(u) = cPv(x) (0 ::;; jJ ~ n)
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are satisfied? If for any x E X the interpolating element U E U is determined
uniquely, we shall call :JjJ an interpolation system. This is the case if and only
if the restrictions cP, I U (0 « v « n) form an (algebraic) basis of u* (see
Davis [5]).

Given any interpolation system f!JJ = (X, U; CPo ,... , cp,,) there exists a
uniquely determined interpolation operator P: X ---+ U which maps an
x E X onto its interpolating element u. P can be constructed as follows:
There is a unique dual basis {uo,... , un} of U with respect to {CPo I U, ... , CPn I U}
such that

o« p." v « n.

With the aid of these elements we define the interpolation operator P by

n

P(x) = L cpvCx) . Uv •

v=o

Obviously, (1) is satisfied for u = Px, and P is a linear and idempotent
operator.

Now let dEN, d? 2. We are going to define d-dimensional interpolation
problems out of one-dimensional ones by means of tensor products.

DEFINITION 1. Let na E No and the interpolation problems

be given for 1 « 8 « d. Then

?J!:= ® Y/j
1«a«d

:= ( ® X/j, ® Ua ; CP1V1 ® ... @ CPavd: 0 « Va « l1a , 1 « 8 « d)
'h;;6~d 1<6<;d

is called the tensor product of the given problems [JIJa (1 « 8 « d). In certain
situations it is convenient to replace @1«a«d Xa by a larger vector space
Z:J @1<a<d Xa and the functionals CPlv , ® .. , ® CPdV

d
by certain extensions

to Z.
The following theorem answers the question whether the tensor product

of interpolation systems is an interpolation system again.

THEOREM 1. (cf., [8]). Let the interpolation problems [JIJa:= (Xa, Ua ;
CP80 , ... , CP8na) be given. lJJ: = ®1<8<d lJJ8 (and any extension of f!JJ) is an
interpolation system if and only if 2;\ ,... , f!JJdare interpolatiol1 systems.

Now we are going to construct the interpolation operator cor-
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responding to the tensor product g; of the interpolation systems ;JJ6 :=

(X6 , Uo ; cPoo ,... , cPo no) (l ~ 8 ~ d). Let {uoo ,•.. , llona} be the dual basis of
{cPoo I Uo ,... , cPano i Uo}. It is easy to see that the interpolation operator
corresponding to .9 := 01<0<d [JJia has the following form:

Examples of certain multivariate interpolation operators will be considered
in Section 4.

2. d-FoLD CROSS NORi\IS

In order to get convergence statements on multivariate interpolation
operators we have to provide the tensor product spaces with appropriate
cross norms.

DEFINITION 2. (cl., Schatten [16]). Let (Xa , il' a) as well as (Yo, I • [a)
be (real or complex) normed vector spaces (l ~ 8 :e;:; d).

(i) A norm 1] on the d-fold tensor product (8\<"<d X o is called a
d-fold cross-norm if for any element of the form Xl ••• '3> Xd (x, E X a ,
~ 8 ~ d) the following identity holds:

d

7](x1 @ ... ® Xd) = n :1 X a ;10 .
0=1

If 7) is a d-fold cross norm on 01<O<d X, then the narmed vector space
(09l<a<d Xii, 17) will be designated briefly by '3:r~<a<d X a . In addition, its
completion will be denoted by ®~<:a<:d Xa .

(ii) Let 7) and w be d-fold cross norms on @l<a<d X a resp., @1<ii<d Ya .
(7], w) will be called uniform cross norms with respect to (@l<a<d X a ,
(2S>t<ii<d Y,,) if for any continuous linear operators 5" : Xa ---+ Ya (l ~ 8 ~ d)
the tensor product operator

cgr Sii: ®" Xii ---+ @'" Y"
1~8~d 1~8~d 1<8<d

is also continuous, and, if in addition, using the induced operator norms
I '1 and I' . lira] , we have

, I' d

II Sii:1 = 11 "5" ' [aJ .
I. 1<6«d ii~1
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In the special case when we have Xa = Ya for 1 ~ 8 ~ dand 7J = w then
7J is called a uniform cross norm on <8\<a<;;d Xa (cr., [16]).

Now we are going to consider special d-fold cross norms on the (algebraic)
tensor product ®l<;;a<;;d X a of the normed vector spaces (Xa , II -lla). To this
end let E E ®l<a<d X8 be an arbitrary element and

nl nd

I ... I gVl""'Vd' XlVI ® -.. ® XdVd
1J1=O vd=O

a representation of E. Then we define

(1) the d-fold E-norm (cf., [23]): Let (X,s', II '11(6) be the normed dual of
(%a , II - lIa) for 1 ~ 8 ~ d. Then we have

It turns out that the value E(E) does not depend on the particular representa­
tion of E E ®l<a<d Xa ;

(2) the d-fold 7T-norm (cf., [23]):

nl na d

7T(8) := inf I··· L I gVl""'Vd I . IT II xavalla,
VI~O Vd~O a~l

where the infimum is to be taken over all equivalent representations of E.
Therefore, 7T(8) does not depend on the specific representation of 8;

(3) the d-Jold pre-Hilbert space norm lX (cf., [6]): Here we have to
suppose that the spaces (Xa , II '1Ia) are pre-Hilbert spaces with the inner
products (- I ')8 (1 ~ 0 < d). Then the lX-norm is defined by

In this case, too, lX(E) is independent of the representation of E E ®1<B<d X a
(cf., [16]).

THEOREM 2. Let (Xa , II '1Ia) and (Ya , I . la) be normed vector spaces
(resp., pre-Hilbert spaces) for 1 ~ 0 ~ d. Then (E, E) and (7T, 7T) (resp., (lX, lX»
are uniform cross norms with respect to (®l<a<d Xa , ®l<a<d Y~). Furthermore,
for T = E,7T (resp., lX) the spaces

and (2)

are isometric isomorphic independent of any brackets used when taking tensor
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products and completions in the first space in (2). Here and in the following,
if necessary, T (resp., E, 7T, ex) are provided with an index k (2 ~ k ~ d) to
note that the occuring cross norms are k-fold ones.

Proof. We are going to show that the spaces

Xl 0T2 (X2 (8\2 (- .. (Xa- l 0'2 Xa) " .»,
(( ... (Xl (8\2 X2 ) ... ) C2'J'2 Xa-J 05\, Xa

(3)

and @~~o<;;a Xo coincide for T = E, 7T, and Ct. To do this we first prove that \ve
have

(4)

as wel! as

(5)

For the special case d = 3, from (4) and (5) we deduce that forming normed
tensor products is an associative operation for T = E, IT,X. By induction, we
get that the spaces in (3) coincide, and that Xl 0r, X2 ®" .. , (8\, Xa is indepen­
dent of any bracketing. Since the completion of a normed vector space is
uniquely determined, the statement will be settled if (4) and (5) can be
verified. Because (5) can be proved in the same way as (4) it is sufficient to
prove (4). We restrict our proof to the case T = E, the proofs for T = 7T

and ex run in a similar way.
Let

n

h := L Xli @ Xu (~) .\di
i=l

be an arbitrary element of 0l<;;o<;;a X o , and (Xo', II . II(a) the normed duals
of the .Yo (1 ~ 8 ~ d).

Then

'n

iz"" := L Xl'(Xl ;) . (X2i @ ... 0 Xai) E \':8)"<1-1 Xa ,
i=l 2~o<d
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The Hahn-Banach theorem implies the validity of the following equation
(cf., [19]):

sup If X1'(Xli) . 1f;(X2i ® ... ® Xai) I= II h"'1' II'd_1 .
<bE(0:~a},;dXa)' i=l

11<b1l9

By the definition of the Ed_I-norm we get

II hx/ II'd_1 = s,up, ... s,up, 1 f Xl'(Xli) . X2'(X2 ,.) ..... Xd'(Xd,.) I·
112 eX2 ;rd eXd i=l

[["'2'1112,<;;1 II xd ll'd,<;;1

Hence, for any h E ®1<;;a<d X awe have

~up, It X1'(Xli) ...•• Xa'(Xdi) I
J.~d EXd l=l

11"''''[[1",<1

I

For the applications in Section 4 we need some knowledge on the E-norm
on the tensor product of certain normed vector spaces. To this end let
fa = [aa, ba] C IR. be nontrivial compact intervals, and C(fa) the vector space
of all continuous real functions on fa provided with the Chebyshev (or
sup- ) norm

II X lIa := sup I xU)1
tEla

Then we have the isometry (cf., [23]):

PROPOSITION 1. Let the normed vector spaces C(Ia) be given for 1 ~ 8 ~ d
as well as 00 E {I, 2, ... , d}, and let L : C(fa) -+ C(fa) be a continuous linear
mapping. Then for any h E C(X:~l fa) the f~llowing eOquality holds:

sup II L(hao)llao = IIOd1 ® .. , ® iddo- l ® L ® idao
+1 ® ... ® idd)(h)ll, .

X6 E1a
l:(o:(d
a""60

Here ha designates the 00th partial mapping
o

with fixed points X6 E fa (0 ¥= 00), and ida is the 8th identity mapping ida:
C(fa) -+ C(fa). By ~ we denote the uniquely determined continuous extensions
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of tensor product operators to the completion of the corresponding tensor
product space.

Proof Given an h E C( X~~l 10 ), the mapping

hI.: (Xl' -'2 ,... , -'ri)~ [L(h,;a)J(x"ol

is an element of C(X:~l18), The mapping

HI.: c(X 11!)3hr->-h L EC(X I,;)
'o~l ' 0001

is linear and continuous. On @~<I!<d C(/,;) HI. coincides with

Therefore, HI. is the uniquely determined continuous extension of HI. tc
the completion @~<a<d CUD)' With the aid of this we get

= 'I HL(MIIE = sup '[L(hao)](-'ao)1
J'fjE1a

1 (,;C;;rl

hence, the proposition holds true. I

sup [, [(ha,)I',;", :
'f 6~l;:,

L;;;:o'(.:::d
6~6l;

3. CONVERGENCE OF LINEAR INTERPOLATION OPERATORS

Given a sequence l}Jn := {X, U" ; r!{">' ... , rP~')} of interpolation systems,
then corresponding to Section 1, there is defined a sequence {[n;',,~'; of
linear interpolation operators:

In : X r->- Un C X.

The theorems and definitions in this section will be given for sequences of
general linear operators. As special cases we can get statements for sequences
of interpolation operators. In addition, one can get corollaries for operators
which do not arise from interpolation systems, As an example we mention
multivariate Bernstein operators (see, e.g., [2]),

DEFINITION 3. Let (X, II '11) be a normed vector space and (Pn}"Er, P.

sequence of linear operators:

P" : X r->- X (n EN).
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Further, let {J(n) be an arbitrary positive real sequence converging to zero.
{PnlneN is called convergent of order pen) at the point x E X if we have

II x - Pnx II = O(p(n)) (n ---+ ex)).

For the pointwise convergence of sequences of tensor products of linear
(not necessarily continuous) operators on the algebraic tensor product of
normed vector spaces one gets the following generalization of a result in
[7, 10]:

THEOREM 3. Let (Xa , II . Ila) for 1 ~ S ~ d be normed vector spaces,

{Pn}"e~, sequences ofendomorphisms ofXa , 'Y) a d-fold cross norm on @l<a<d Xa,
and

III

h = I Xl" @ ... @ Xd" E ® Xii'
H=l 1~6~d

Suppose the sequences {Pna}neN converge for the elements X a" (l ~ S ~ d,
1 ~ f1- ~ 111) of the orders cxo,,(n). Then

® P,/: 0?? Xo---+ ®n Xii
1<6<d l:(o:(d l<o~d

converges of order cx(n) := maxl<a<d,l<,,<n, cxauCn) at the given element h.
We are going to consider continuous tensor product interpolation operators

on the completion ®~<::a";:d X a of Banach spaces X a (l ~ S ~ d). First we
~ '"

get as a consequence of the Banach-Steinhaus theorem the following:

THEOREM 4. Given the Banach spaces (Xa , II . Ila) for 1 ~ S ~ d, and let
{Pn ii}neF'\I be d sequences of continuous linear operators

(1 ~ S ~ d)

such that P nax converges to x for all x E Xii (1 ~ 1) ~ d, n ---+ ex)). Suppose,
@l<a<d X a is provided with a uniform cross norm 1]. Then

converges pointwise on ®~~a';::d Xii to the identity mapping.
""~

Theorem 4 describes the qualitative behavior of the convergence of
continuous linear interpolation operators. In order to get assertions on the
quantitative behavior for not necessarily equicontinuous linear operators we
prove
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THEOREM 5. Let (Xs , II . [Is) be normed vector spaces (l :S: 0 ,:;; d), 7) a
uniform cross norm on @l~s~a X s , and {PnS}nEN sequences of continuous
linear operators on X" (l :;;:;; I) :;;:;; d). Then for an arbitrary k E ,'29;<;;0<;;'; Xa the
following estimation holds true:

where Y'a designates the symmetric group of all permutations of the elements
{I, 2,... , d], and

Proof Let a E Y'a be given. By means of well-known density arguments
we get

hil @id2 ,2) -.. 1:8 idd - pnl ®Pn2 ® ... ®pnd

= idl,~ .. , @idu(d)-l @(idu(d) _ p~(d» ,~ idu«(t)~l @ ... ®idd

_ idl ... ® (idU(d~l) _ p~(d-l» @idu(d-l)-t-l ® .. , @ p~(d) @ ... ~ ida

_L ... ~ P I 1'X1 p 2."0 ... ,"0 (['dU(I) _ pull) 7\ pU(J,)+l ,~ ... P d
I I n!.Yn"Y·.::::J n '-.:/n. "..._J n'

Since YJ is a uniform cross norm this latter relation yields

!I k- ( @ p,,") (k) II
1~5~d n

d

os:;; I II k - (idl @ ... @ p~(o) @ idu(o)';'l ® ... ® idd)(k)li",
,,~l

d

TI II pu(,') I'
• ," ,I[u(v))'

['=0--:.-1

(6)

This relation holds true for any permutation a E Y',l ; hence, the assertion
is proved. I

Tn the special case d = 2 this theorem can be found in [12].

Remark. The occurrence of the norms if p~(v) U[u(v)] in (6) causes a dete­
rioration of convergence in the multivariate case in comparison with the
convergence of the "components"

Ii k ~ (idl ® ... @ p~(5) @ idu(5
)-rl @ ... ® idd)(k)i" .

Since we can choose an advantageous permutation G E ,Cfl(/ we can get an
optimal estimation of the form (6).
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If we restrict the continuous linear operators to appropriate subspaces,
we get the same order of convergence in the multivariate case as in the one­
dimensional components, which can be stated as follows:

THEOREM 6. Let (Ya , I . la) be normed vector spaces (1 ~ S ~ d), {p"a}nE~d

sequences of continuous endomorphisms on Ya (1 ~ S ~ d). Further let Xa be
subspaces of Ya , and let there exist a finer norm II . Iia on Xa than the induced
norm (i.e., suppose there exist real numbers Ca such that I x la ~ call x Iia for
all x E Xa (1 ~ S ~ d)), which makes the sequence {l\a}"EI'cl defined by

uniformly convergent of order LXa(n) to the (continuous linear) injection

If(Yj, w) are uniform d-fold cross norms with respect to (®l<O<d X a , ®l<a<d Ya)
~"then for any k E ®l<a<d Xa we can state

Ilk - (@ p"a'l (k) II = O(max cta(n))
I 1~6:(d I UJ I <;o<.d

for n --* 00.

The importance of this theorem is given by the fact that for elements k
belonging to the subspace ®~<a<d Xa one can get multivariate convergence
statements of the same quality as in the one-dimensional case without
restrictions concerning equicontinuity of the operator families {P"a} nE~" .

4. ApPLICATIONS

Now we are going to consider several applications ofTheorems 3,4, 5, and 6.

(A) Multivariate Cubic Spline Interpolation

First we investigate the multivariate cubic periodic spline interpolation
operators S"looo"d • To this end we need corresponding results in the one­
dimensional case which was treated by Cheney and Schurer [3, 4).

Let C*[0, 1) be the space of all continuous functions f on [0, 1] satisfying
1(0) = 1(1), and provide CAO, 1) with the supremum norm. Then (see
Cheney and Schurer [3]) the periodic cubic spline operator with respect
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to the equidistant nodes 1J~n) : = vln (0 :s;; v ;;;:;; n) has the following form:

1/

S,,: C*[O, 1) 3fi-+Sn(j) = I j(vln) . s"(I/) EO C*[O, 1],
v=o

where the s~l/) are periodic cubic spline functions associated with the nodes
{r)b"I,..., 'f):.n)} satisfying s;n)(r;~nl) = 8"". Cheney and Schurer [3] proved
that for the Chebyshev norm we have

and, in addition, the estimation

where w is the modulus of continuity.
These results apply for multicubic periodic spline interpolation. In order

to do this provide the nodes and the operators occurring above with indices
is (l :s;; 8 :s;; d). Then the d-dimensional periodic cubic spline operator has
the form

Here CAX:=l [0, I)) denotes the space of all functions h EO c(X:~l [0, I))
that satisfy ho(O) = hi1) for 1 :s;; 0 :s;; d (in the notation as in Proposition 1).
With the aid of Cheney and Schurer's result [3] and Theorem 4, we get for
each h EO C*(X:~l [0, I)) for not necessarily coinciding nI , ... , lId the convergence

lim I~ II - Sn,... n,,(h)IIE = O.
(nl'.' .. nd)----'x.

In addition, we can get the quantitative estimation:

THEOREM 7. For any function h EO C*(X:~I [0, I]) the following estimation
holds true:
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Here the kth partial modulus of continuity Wk of a function f E C(X:=l Ia) is
defined by

wk(f, t):= sup sup I f(x l , ••. , Xk , ... , xa) - f(xl , .•. , xk , ... , xa)l,
XaEla 1Xk-Xkl<;;;t

1<8<d Xk.XkE]k
a""k

where 1 ,;:;; k ,;:;; d, t E IR., t ~ 0, and Is are compact intervals (see [22]).

Proof Taking the notation of Proposition 1, we obtain with the aid of
Theorem 5 and Proposition 1 the estimation

a a

,;:;; ~W L IT II S~:lv) II[o(v)]' sup II(ido(a) - S~~~~»)(ha(a»)lla(a)
d S=l v=6+1 XjE[O,l]

l<;;;i<;;;a
#a(a)

a a 1
,;:;; min L IT II S~~~~) II[a(v)]' sup W (ha(s) '-2--)

OEsPo a=l v=a+I XjE[O,l] nata)
l<;;;i<;;;a
i""<7(6)

a a 1
= ~1JW L n II S~:lv) I\[a(v)] . Wa(a) (h, -2n)..

o a=l v=a+1 o(a)

In this case of periodic cubic spline interpolation the corresponding
interpolation operators are equicontinuous. Because of this fact our estimations
in several variables are of the same quantitative behavior as corresponding
one-dimensional assertions (up to some more complicated constants). If
the sequence of interpolation operators is not equicontinuous then Theorem 5
yields worse estimations in the several variables' case than in one dimension
because of the norms II p~~L) ll[a(v)] occurring in Theorem 5. We are going to
point out this in the case of multivariate Lagrange interpolation. In addition,
Theorem 6 enables us to get better results for certain functions lying in
some subspaces.

(B) Lagrange Interpolation in Several Variables

Let the compact intervals J a = [-1, 1] (1 ~ 8 ,;:;; d) be given as well as
the d infinite triangular matrices M a which we shall call nodal matrices
(cf., [15]):

where we have

M . {(n) (n)}
a·= XaQ , ... , X on n>O (1 ,;:;; 0 ,;:;; d),

(i) -1';:;; x~~) ,;:;; 1 for 1 ,;:;; 8 ,;:;; d, °,;:;; v ,;:;; n, n = 0, 1, 2,... ,
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(ii) Fixed any 8 and any n E No , then

217

holds true.
For .Yo E Jo we define

and

A nodal matrix M o is called po-normal, if

for all X oE Jo , all n E No, and all v E {D, ... , n},
If t k M - {c(n) c(n)} h (c(n) ,"(n),' th t f 'we a e <5 - £00 , .. " Son ·n)() , were '\.Soo , ... , ';on J 1S e se 0 zero:>

of the (n + l)th Chebyshev polynomial of the first kind, the latter
is given on [-1, 1] by Tn+1(x) = cos((n + 1) . arccos x), then M o is
i-normal. In the latter case, the nodes will be called Chebyshev nodes.

With the aid of the fundamental functions of Lagrange interpolation,
li;a), we define the 8th Lagrange interpolation operator

by

for a given nodal matrix M o on J6 • For po-normal resp., Chebyshev nodes
the following one dimensional estimates in the Chebyshev norm hold (see
[15]):

1 2

I r- L O (f)1 - 0 (_/16_).I., no· I - 11"6+'0 .o .

resp.,
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provided thatfE CTo(Ja), the space of all ra-times continuously differentiable
functions, and j("a) E Lip Cio (0 < Cia ~ 1). In the multivariate case these
results yield

THEOREM 8. Denote by L n "'n (resp., Ln "'n ) the d-dimensional Lagrange
1 dId

interpolation operator

with respect to po-normal nodes (1 ~ 0 ~ d) (resp., Chebyshev nodes) in each
component, and suppose h E C(X~~l Ja) possesses the partial derivatives
arahI8x~a, which latter lie in Lip Cia (0 < lXo< 1) for 1 ~ 0 ~ d (independent
of the other variables), then the following estimations hold:

resp.,

1 _ L (/)1 - 0 ( . ~ (log no)o(O) )
II I n,· .. nd I IE - ~~ {-:1 n~o(o)-+-~a(o)

for (11 1 ,... , nd) ---+ 00.

This estimation turns out to be worse than the corresponding one­
dimensional estimation above. For the subspace

a theorem holds true which makes assertions on multivariate interpolation
convergence of the same quality as the one-dimensional results. It is a
consequence of Theorem 3.

THEOREM 9. Let h = L~~d1" ® ... @fd" E ®~<O<d C(Ja) be given such
that the functions fa" are ro,,-times differentiable and j~:o,,) E Lip lXo"

(0 < Cio" ~ 1). Then we have the following estimations for po-normal (resp.,
Chebyshev) nodes:

resp.,

for (/11'"'' I1d) ---+ 00.
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In some special situations, one can achieve the same order of convergence
of interpolation in the multivariate case as in the one-dimensional case even
if one does not restrict to the noncompleted tensor product spaces as il'
Theorem 9. In the following theorem we want to point out this fact for the
multivariate Lagrange interpolation.

To this end we introduce the space CjJl'''''d(X~~l J 8 ) which consists of an
functions whose derivatives Dr.!··· 1T

d exist and are continuous whenever
o~ 77"6 ,:;; Po (l ~ .3 ~ d). Provide Ci'I"');d(X:~lJo) with the norm of uniform
convergence in these derivatives, i.e.,

Then Theorem 6 yields

THEOREM 10. Let Ln"""d (resp., Ln! ... n) be the d-dimensional Lagrange
interpolation operator,

with respect to PB-normal (resp., the Chebyshev) nodes in J 8 = [-1,1]
(1 ~ 8 :::..'::; d). Then for all h EO CjJ""Pd(X:~l Jo) the fol101ving estimations
hold true:

resp.,

Proof By Treves [23], we have the isometry

If for any 8 E {l, 2'00" d}, ja resp., L~6 denote the mappings
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then the following estimation holds true:

!
1/2

O(~)
Lo _., = \ ngo '

II no 16 II . log 11
0

'

0('1£6-),

for po-normal nodes,

for Chebyshev nodes,

(for 110 ---+ 00), where II . II is the corresponding operator norm. Indeed, with
the aid of Jackson's theorems we have

(i = 1 for po-normal nodes, i = 2 for Chebyshev nodes). Here En/g) denotes
the approximation constant of g with respect to the Chebyshev-norm, and
II . Il po is the norm of uniform convergence of the derivatives of order 7To
(0 ~ 7To ~ Po).

In the case of po-normal nodes we have

and in the second case

holds true. Hence with the aid of Theorem 6 the proof is established. I
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